
SIDERA - a Simulation Model for Time-Triggered Distributed
Real-Time Systems

Alexander Hanzlik1

Abstract – SIDERA (SImulation model for DEpendable Real-time Architectures) is a
simulation model for time-triggered distributed real-time systems. It is based on the Time-
Triggered Architecture TTA and allows the simulation of large-scale real-time systems. SIDERA
provides simulation of various real-time protocol services like system startup, communication,
clock synchronization, membership service and protocol error detection and handling. A failure
simulation module allows testing the stability of the systems under investigation in the presence
of node failures. This paper is about basic concepts of time-triggered distributed systems and the
implementation of these concepts in a simulation environment. Further, it provides a case study
of clock synchronization in distributed systems and presents an approach that significantly
improves the synchronism in a distributed system while reducing the need for high-quality
oscillators.

Keywords: Simulation, Clock Synchronization, Time-Triggered Systems, Distributed Real-Time
Computing.

I. Introduction

Simulation is a reasonable, powerful and frequently
used mean for gaining insight into the functionality
and structure of distributed systems. SIDERA has been
developed for the simulation of large-scale time-
triggered systems, with the focus on simulation of
fault-tolerant clock synchronization algorithms. The
paper is structured as follows: the rest of this section
consists of some related work, the system structure that
we are dealing with and a short overview of the Time-
Triggered Architecture. Section 2 introduces the five
basic concepts of the Time-Triggered Protocol TTP that
are essential for the simulation. Section 3 describes
how these basic concepts are implemented in SIDERA.
Section 4 gives an overview of the features that
SIDERA provides. Section 5 presents a simulation case
study and a clock synchronization algorithm that
remarkably improves the synchronism among an
ensemble of clocks in a distributed system. Section 6
concludes the paper.

I.1. Related work

[1] surveys SimUTC, a framework for simulation of
round-based clock synchronization algorithms in fault-
tolerant distributed real-time systems, using the
discrete-event simulation package C++ SIM [2].
SimUTC has been developed in the course of the
SynUTC project1 which is devoted to establishing a
time service for fault-tolerant distributed real-time
systems. The toolkit incorporates either real network

1 SYNUTC. http://www.auto.tuwien.ac.at/Projects/SynUTC.

controllers or their simulated counterparts.
Cluster simulation ([3], [4]) provides a cheap and

useful technique to test single nodes of a distributed
application in isolation without the need to setup the
whole system. The idea is to simulate the target system
for the node under test by means of one or more
physical nodes connected to the test node via a
dedicated logical line interface.

[5] presents detailed investigations of communication
properties of the Time-Triggered Protocol TTP/C based
on a deterministic fault injection approach with regard
to various kinds of faults on the communication
medium and corresponding error detection latencies
using TTPSIM, a simulation environment for TTP/C.

[6] investigates the performance and the limits of the
clock synchronization algorithm used in the Time-
Triggered Protocol TTP/C. The algorithm is analyzed
using a VHDL simulation of the hardware the protocol
is executed on. The system response (i.e. achieved
synchrony within a cluster and cluster drift rate from
real-time) to altered parameters is presented and
discussed.

 [7] analyzes the performance of several
deterministic clock synchronization algorithms in the
presence of clock crash, processor crash, timing,
Byzantine, network omission and network performance
failures. A simulation model consisting of n nodes
connected through a point-to-point fully connected
network is used for the analysis.

[8] presents a software-based model for fault-tolerant
clock synchronization in distributed UNIX
environments and analyzes the performance of a
software-based implementation according to variations

Alexander Hanzlik

in CPU and network load.
[9] compares the performance of different clock

synchronization algorithms and clock correction
strategies with regard to achievable synchrony by
means of simulation. [10] deals with the simulation of
multi-cluster clock synchronization strategies in the
course of the ClockSync project [11], which is
concerned with the development of a large simulation
model for the synchronization of clocks in a distributed
real-time system.

[12] presents the CESIUM tool that addresses the
problem of testing communication protocols
considering various obstacles to testing such as
observability, controllability, deterministic experiment
control and absence of the probe effect. The tool has
been used for various testing experiments on
implementations of protocols, covering group
membership protocols [13] and clock synchronization
algorithms.

[14] presents a discrete event distributed simulation
framework that addresses the increased complexity of
simulation models and the related modeling which
demands the execution of simulations on multiple
processors. The framework supports easy and fast
development of distributed simulations and efficient
adaptive synchronization of simulation processes.

[15] introduces DSSimulator, an object oriented
simulation model which provides a scalable and
flexible platform for the simulation of distributed
systems. It deploys different distributed applications
and is designed for the simulation of a large number of
nodes on a single workstation.

I.2. System structure

We assume that a system can be built by repetitive
use of the following components:

Fig. 1 System Structure.

Node. A computational unit that executes a part of a
distributed application. Each node maintains a local
clock.

Communication network. A shared communication
resource connecting nodes.

Cluster. A set of spatially separated nodes that
exchange messages via a communication network and
that execute a distributed application in a cooperative
manner.

Gateway. A connection between two clusters. It
consists of a pair of nodes, one in each cluster, that
communicate over a dedicated communication link.

Figure 1 shows an example for a system consisting
of two clusters connected via a gateway.

I.3. The Time-Triggered Architecture

The conceptual basics of SIDERA are the Time-
Triggered Architecture TTA [16] and the Time-
Triggered Protocol TTP [17], both developed at the
Vienna University of Technology for over more than
twenty years.

Fig. 2 TTA cluster.

Figure 2 depicts a cluster of the TTA. It consists of
a set of Fault-Tolerant Units (FTUs) that communicate
using the Time-Triggered Protocol (TTP). The host
application covers the application specific
functionalities of the FTU, whereas the TTP handles
protocol specific tasks (startup, clock synchronization,
communication etc.). Access to the communication
network is controlled by a cyclic time-division
multiple access (TDMA) scheme derived from a global
notion of time. An FTU can consist of one, two or more
nodes and provides the specified service without delay
even after the failure of a node.

II. Basic concepts

This section gives an overview of the basic concepts
of the simulation model.

II.1. Communication medium access control

In distributed systems with a shared communication
resource the access to the communication medium has
to be regulated such that all nodes are able to deliver
messages within an upper bound in time. In time-
triggered protocols like TTP [17] or FlexRay [18], the
access to the communication medium is controlled by a
collision-free, Time Division Multiple Access strategy
(TDMA). Real-time is divided into slots. Each node is
assigned one slot during which it is allowed to send.
The sequence of slots in which each node sends at most
one message forms a TDMA round.

 Figure 3 shows the principle of operation.

Fig. 3 TDMA scheme.

Alexander Hanzlik

II.2. Global time

A key issue in time-triggered systems is the
establishment of a fault-tolerant, global time base using
a clock synchronization algorithm ([7], [19], [20]). A
common notion of time among the nodes in a cluster is
a prerequisite for a TDMA access strategy to the
communication medium.

Internal clock synchronization. The task of
internal clock synchronization is to maintain a global
time base that all nodes agree on. The TTP protocol
utilizes the concept of microticks and macroticks [21].
Microticks correspond to the local oscillator ticks at
each node, while macroticks represent the global notion
of time used to trigger and order global events. Each
node generates a macrotick by selecting a number of
microticks and synchronizes its macrotick by
dynamically increasing or decreasing the number of
microticks per macrotick, according to the clock state
correction term that is delivered periodically by the
clock synchronization algorithm. All nodes adjust their
local clocks at the same point in global time. The
internally synchronized global time proceeds in units
of macroticks. The macrotick counter at each node
represents the node's view of the global time (cluster
time). Each node uses the macrotick counter for the
timestamping and ordering of events that occur in the
distributed system.

External clock synchronization. The task of
external clock synchronization is to bring the internally
synchronized cluster time into agreement with external
reference time. In a cluster there has to be at least one
node that provides reference time to the other nodes
within its cluster, referred to as reference time server
[22] or time master node [23], respectively.

Multi-cluster clock synchronization. Multi-cluster
clock synchronization aims at bringing the global times
of an ensemble of clusters into agreement. An
unidirectional flow of timing information is provided
via the gateways. The cluster times are synchronized
by means of external clock synchronization. In Figure
1, the global time of cluster A (provided by node A6)
serves as reference time for cluster B (node B5 is the
reference time server for cluster B).

II.3. Membership

Membership. A membership service provides each
node with a consistent view of the operational state of
the other nodes [24].

II.4. Protocol error detection and node deactivation

Each node in the system periodically checks
whether it fulfills the conditions for correct operation
dictated by the communication protocol and deactivates
itself upon detection of a protocol error.

II.5. System startup and node reintegration

Whereas clock synchronization aims at maintaining
a global time base within a distributed system, many
clock synchronization algorithms require that the
clocks are initially synchronized. This is the task of a
startup algorithm [25]. Further, a mechanism is
required for the reintegration of nodes that have
stopped operation due to the detection of a protocol
error.

III. Implementation concepts

This section gives implementation-specific aspects
of the basic concepts introduced in the last section.

III.1. Communication medium access control

Each simulated node maintains a quartz oscillator. A
microtick counter is incremented after a given number
of oscillator ticks. The duration of the oscillator tick is
dependant on a node-individual sys_drift value (Table
I) that determines whether the clock of this node is
running fast or slow against real-time.

Real-time denotes the progression of physical time
that can be measured using clocks. In a real system, to
be able to classify clocks as fast or slow, it is necessary
to define a reference clock that serves as a standard for
time measurement in this system and to relate the clock
rate of the reference clock to the rates of the clocks
under consideration. In a simulation environment, the
observed rates of the simulated clocks are related to the
progression of simulation time which serves as a
reference clock.

A macrotick counter is incremented after a given
number of microticks. The macrotick counter at each
node represents the node's view of global time.

The access to the communication medium is based
on a Time Division Multiple Access (TDMA) strategy.
Real-time is divided into slots. Slots are assigned to
nodes. A list of slot entries forms a communication
schedule.

TABLE I
NODE SPECIFIC OFFLINE PARAMETERS

Simulation model
 variable Meaning

nodeID node identifier
OSC oscillator ticks per microtick
LCP microticks per macrotick

sys_drift systematic drift of the node's
clock

gateway_node gateway node flag
time_master_node time master node flag

free_running_MT_int free running macroticks used for
internal clock synchronization

free_running_MT_ext free running macroticks used for
external clock synchronization

CF cold start allowed flag

cold_start_max maximum number of frames
to be sent in state COLD START

Alexander Hanzlik

Each node traverses the communication schedule in
a cyclic manner. A node enters a slot if its macrotick
counter reaches slot_start_time (Table II). If nodeID
(Table I) is equal to LogicalSenderName, the node is a
sender in the current slot and sends a message when its
macrotick counter reaches msg_send_time. Else the
node is a receiver. Each node is assigned one slot in
which it is allowed to send.

TABLE II
SLOT ENTRY IN COMMUNICATION SCHEDULE

Simulation model
 variable Meaning

 slot_start_time start time of slot in macroticks
 LogicalSenderName nodeID of the sender in this slot

msg_send_time message send time in macroticks
CS Clock synchronization flag
SYF Time difference capturing flag

RA Reintegration allowed flag

III.2. Global time

In a time-triggered distributed system all nodes have
to agree on a global notion of time. All nodes
periodically adjust their local clocks according to a
clock state correction term that is delivered by a clock
synchronization algorithm.

Time difference capturing. A node has to know
the deviation of its local clock to the other clocks to be
able to keep synchronized. Time difference capturing
is the process of estimating the deviation of a local
clock to a remote clock. In a slot with the SYF flag set
(Table II), all nodes use the arrival time of an incoming
message for the estimation of the deviation of their
clocks from the sender's clock. They calculate the
expected arrival time (msg_send_time, Table II) in
terms of local microticks and compare it to the
observed arrival time (the microtick counter at message
reception time). The result is the deviation from the
sender's clock in terms of microticks and is stored in
deltas (Table III), a push-down stack of depth four.
Each time an estimate is added to deltas, the oldest
estimate is discarded.

TABLE III
NODE SPECIFIC RUNTIME PARAMETERS

Simulation model
 variable Meaning

deltas[4] time difference capturing stack

slot_number current slot in communication
schedule

 corr_term_int current internal clock correction
term

corr_term_ext current external clock correction
term

time_message current deviation from external
reference time

frame_ack_counter frame acknowledgement counter
frame_inv_counter frame invalid counter
frame_fail_counter frame fail counter

 iframe_counter frames sent in state COLD
START

c_state current C-State of controller

Internal clock synchronization. At the end of a
slot with the CS flag set (Table II), all nodes calculate
an internal clock state correction term corr_term_int on
the base of the estimates contained in deltas using the
fault-tolerant average (FTA) algorithm [26]: the
minimum and the maximum estimates are discarded,
the internal correction term is the average of the two
remaining estimates. Positive values of corr_term_int
indicate that the local clock is running fast, negative
values that the local clock is running slow against
global time.

Application of the internal clock state correction
term. All nodes periodically adjust the number of
microticks per macrotick according to corr_term_int.
Every free_running_MT_int (Table I) macroticks one
microtick is corrected by manipulation of the local
microtick counter until corr_term_int is exhausted. The
local clocks run free afterwards until the next
synchronization instant marked in the communication
schedule.

External clock synchronization. External clock
synchronization is done by means of inter-cluster
communication via gateways (Figure 1). A gateway
consists of two interconnected nodes, a gateway node
in one cluster and a time master node in another
cluster. A node with the gateway_node flag set (Table
I) provides its local time in terms of seconds to its
associated time master node. A node with the
time_master_node flag set calculates the deviation from
gateway node time to local time in terms of seconds
and distributes it to the other nodes (time_message) at
its msg_send_time (Table II). Upon reception of a
time_message all nodes calculate an external clock state
correction term corr_term_ext (Table III) in terms of
local microticks.

Application of the external clock state correction
term. All nodes periodically adjust the number of
microticks per macrotick according to corr_term_ext.
Every free_running_MT_ext (Table I) macroticks one
microtick is corrected by manipulation of the local
microtick counter until corr_term_ext is exhausted.
The local clocks run free afterwards until the reception
of the next time_message.

III.3. Membership

The membership service keeps the nodes informed
about the operational state of the other nodes in their
cluster.

Message format. Each active node sends a message
(frame) once per TDMA round containing its
controller state (C-state).

TABLE IV
CONTROLLER STATE (C-STATE)

Simulation model
 variable Meaning

Time Global time in macroticks

MEDL_Entry current slot in communication
schedule

 Membership Membership vector

Alexander Hanzlik

Membership. The membership vector is a bit-
vector containing one bit entry for each node. Active
nodes are set to 1 and inactive nodes are set to 0. The
membership vector represents a node's view of the state
of all nodes in the cluster. A receiver node adds a
sender node to the membership when it receives a valid
frame during the communication schedule slot assigned
to the sender. A frame is valid at the receiver if sender
and receiver agree in Time (with a maximum deviation
of one macrotick), MEDL_entry and Membership, else
invalid. A receiver removes a sender from the
membership if it receives an invalid frame during the
slot of the sender or no frame at all (null frame).

Clique avoidance. The clique avoidance logic shall
prevent a cluster from being partitioned into different
subsets (cliques) that are not able to communicate with
each other. Each node maintains a frame_ack_counter,
a frame_inv_counter and a frame_fail_counter (Table
III). Each node increments the frame_ack_counter
when it receives a valid frame, the frame_inv_counter
when it receives an invalid frame and the
frame_fail_counter if it receives no frame at all in the
current slot.

When a node enters its sending slot (i.e. once per
TDMA round), it checks the counters. If
frame_ack_counter is bigger than the sum of
frame_fail_counter and frame_invalid_counter, it
clears the counters and remains active. Else the node is
in disagreement with the majority of the cluster and
stops operation.

III.4. Protocol error detection and node deactivation

Each node stops operation upon detection of one of
the following protocol errors:

Clock synchronization error. When the internal
clock state correction term exceeds half the duration of
a macrotick, the node detects a synchronization error.

Acknowledgement error. The clique avoidance
logic has detected that the node is in disagreement with
the majority of the cluster (Section III).

Communication system blackout. The node
detects that no other node has sent a frame during the
last TDMA round (i.e. the sum of frame_ack_counter
and frame_invalid_counter is 0, Table III).

III.5. System startup and node reintegration

System startup (after initial power-on or after a
communication system blackout) and node
reintegration (after the detection of a protocol error) are
based on a four-state model (Figure 4).

Timeouts. The following node-specific timeouts are
of importance for correct operation of the node during
startup and reintegration phase.
• The startup timeout τi

startup of a node which is
assigned TDMA slot i is equal to the sum of the
durations of all slots prior to slot i.

τ i
startup

=0 : i=0

τ i
startup=∑ j=1

i
τ j−1

slot : i0
(1)

τj
slot is the duration of the slot assigned to node j.

• The cold start timeout τi
coldstart of a node i is the

sum of its startup timeout τi
startup and the duration of

a single TDMA round τround.

τ i
coldstart

=τ i
startup

τ round (2)

• The listen timeout τi
listen of a node is the sum of its

startup timeout τi
startup and the duration of two

TDMA rounds τround.

τ i
listen

=τ i
startup

2×τ round (3)

This choice for the listen timeout ensures that the
longest cold start timeout is shorter than the shortest
listen timeout [17].

Node states and state transitions. Figure 4 shows
the states and state transitions of a node.

Fig. 4 Node states
and state transitions.

• A node transits to the FREEZE state
o after power-on of the system (start of

simulation) or
o upon detection of a protocol error (Section

III).
 The node initializes its internal data structures,

starts the listen timeout and transits to the
LISTEN state.

• A node transits to the LISTEN state
o after initialization of its internal data

structures.
Upon expiration of the listen timeout the node

restarts the listen timeout and remains in state
LISTEN if

o no valid frame was received from any
other node and

o the node is not allowed to enter COLD
START state.

• A node transits to the COLD START state upon
expiration of the listen timeout if

Alexander Hanzlik

o the node is allowed to enter COLD
START state (CF flag is set, Table I) and

o iframe_counter (Table III) is less than
cold_start_max (Table I).

The node sends a frame, increments
iframe_counter and starts the cold start timeout.

Upon expiration of the cold start timeout the
node increments iframe_counter, sends another
frame and remains in state COLD START if

o no valid frame was received from any
other node and

o iframe_counter is less than
cold_start_max.

If the node is not allowed to send another frame, its
starts the listen timeout and transits to state LISTEN.

• A node transits to the ACTIVE state
o from state LISTEN

upon reception of a valid frame (Section
III). The C-state (Table IV) is copied
from the received frame.

o from state COLD START
upon reception of a valid frame. The
iframe_counter (Table III) is cleared.

III.6. Failure simulation

SIDERA provides a failure simulation module that
allows testing the stability of the systems under
consideration in the presence of node failures. A node
failure occurs when a node stops operation due to the
detection of a protocol error (Section III).

The following node failures can be modeled:
• Crash failures

 A node stops operation.
• Transmission failures

 A node sends an invalid frame at its message send
 time defined in the communication schedule
 (Section III).
• Clock state failures

 The microtick counter at a node changes to a
 specified value.
• Clock rate failures

 The systematic drift rate of a node changes to a
specified value.

A node failure script consists of an arbitrary
sequence of node failure entries and allows a node to
fail in different ways during one simulation
experiment.

A node failure entry defines
• the kind of node failure
• the point in simulation time at which the node

failure occurs
• the duration of the node failure
• if the node recovers from the failure or not (for

simulation of transient and permanent failures)

IV. SIDERA features

SIDERA provides
• simulation of single-cluster and multi-cluster time-

triggered systems
• simulation of real-time protocol services (system

startup, communication, clock synchronization,
membership service, protocol error detection and
handling)

• simulation of the FlexRay [18] clock
synchronization algorithm

• node failure simulation
on a single computer system with no need for

special hardware. SIDERA is written in C++ and
consists of a simulation runtime module, a graphical
user interface for generation of the simulation input
parameters and a graphical analysis tool for
interpretation of the simulation results (Figure 5).

The GUI and the analysis tool have been developed
using Qt2, a tool for convenient design of graphical user
interfaces and cross-platform C++ development.

The current version of SIDERA runs on LINUX
platforms (Kernel version 2.6)3.

SIDERA has been validated by means of reference
tests using a VHDL model of a TTPC/C1 controller in
course of which it was shown that the simulation
model follows the behavior of the VHDL reference
model. The tests and the results can be found in [27].

 Fig. 5 SIDERA simulation environment.

V. Simulation of clock synchronization
algorithms - a case study

We have used SIDERA for the investigation of
fault-tolerant clock synchronization algorithms. In the
course of our investigations, we have developed a clock
synchronization algorithm that combines fault-tolerant
clock state correction with central clock rate correction.
This algorithm significantly improves the achievable
precision in time-triggered distributed systems while
reducing the need for high-quality oscillators. The
algorithm has been validated by means of hardware
experiments, using the TTA for a case study [28].

 In this section we consider a 2-cluster system like
the one depicted in Figure 1 First, we will study the
properties of two different single-cluster systems that
perform internal clock synchronization using the fault-
tolerant clock synchronization algorithm of the TTA
(Section III). We will then connect the two internally
synchronized clusters via a gateway (Section III) and
analyze the achievable precision of this 2-cluster
system using an external clock synchronization
algorithm for the TTA [23]. Finally, we will apply our
new algorithm

2 Qt is available at www.trolltech.com.
3 A demo version of SIDERA is available for download at

http://www.vmars.tuwien.ac.at/people/alexhanzlik.html.

Alexander Hanzlik

such that the local clocks perform not only clock
state correction, but also clock rate correction during
the clock synchronization process. We will show that
the algorithm not only improves the achievable
precision in single- and multi-cluster systems, but that
it also integrates internal and external clock
synchronization in multi-cluster systems.

V.1. Experimental setup

Table V summarizes the system configuration that
we have used for the simulation experiments.

The numbering of clusters, nodes and slots starts
from 0. The drift rate values describe the systematic
drift of the nodes against simulation time. Negative
values indicate fast running clocks and positive values
indicate slow running clocks.

The figures used in the descriptions of the
simulation experiments consist of a set of different
windows. The numbering of the windows starts with
0, starting at the top window in each figure. The x-axis
denotes the progression of simulation time with the
same granularity for all windows (i.e. events on the
same x-coordinate in different windows happen at the
same point in simulation time).

TABLE V

CLUSTER CONFIGURATIONS

Property Cluster 0 Cluster 1

Number of nodes 6 8

Number of TDMA slots 6 8

SYF slots all 0,2,4,6

CS slot 5 6

Slot duration 2ms 1,5ms

TDMA round duration 12ms 12ms

Macrotick duration 1μs 1μs

Simulation time 2s 2s

Clock drift rate window 40ppm 55ppm

Drift rate Node 0 (s/s) -2 x 10-5 -2,75 x 10-5

Drift rate Node 1 (s/s) -1,2 x 10-5 -2 x 10-5

Drift rate Node 2 (s/s) -4 x 10-6 -1,2 x 10-5

Drift rate Node 3 (s/s) 4 x 10-6 -4 x 10-5

Drift rate Node 4 (s/s) 1,2 x 10-5 4 x 10-5

Drift rate Node 5 (s/s) 2 x 10-5 1,2 x 10-5

Drift rate Node 6 (s/s) - 2 x 10-5

Drift rate Node 7 (s/s) - 2,75 x 10-5

Alexander Hanzlik

V.2. Experiment 1: Fault-tolerant clock state
correction - single-cluster system

In Experiment 1 we determine the achievable
precision of two clusters that perform fault-tolerant
clock state correction according to the internal clock
synchronization algorithm used in the TTA (Section
III).

According to Figure 6, Cluster 0 achieves a precision
of 14 microticks (window 0) and Cluster 1 achieves a
precision of 20 microticks (window 2). The cluster
drift rate is the drift rate of the internally synchronized
cluster time against simulation time. Cluster 0 shows a
cluster drift rate of 7x10-6s/s (i.e. it is slow against
simulation time, window 1); Cluster 1 has a cluster
drift rate of -4x10-6s/s (i.e. its cluster time proceeds fast
against simulation time, window 3).

V.3. Experiment 2: Fault-tolerant clock state
correction - multi-cluster system

In Experiment 2 we connect Cluster 0 and Cluster 1
via a gateway (Section III) to a 2-cluster system like
the system shown in Figure 1 The gateway consists of
the gateway node (Node 0) in Cluster 0 and of the time
master node (Node 4) in Cluster 1.

The gateway provides a unidirectional flow of
timing information from the gateway node to the time
master node. In our experiment, Cluster 1 is externally
synchronized to the global time of Cluster 0. The time
master node in Cluster 1 periodically retrieves the local
time from the gateway node in Cluster 0, determines
the deviation from its local clock to the gateway node
clock and distributes the deviation to the other nodes in
its cluster by means of a time message [23]. At a pre-
defined instant once per TDMA round, all nodes in
Cluster 1 calculate an external clock state correction
term and apply it to their local clocks to keep
synchronized to reference time provided by the
gateway clock.

Figure 7 shows the results for Experiment 2. The 2-
cluster system achieves a precision of 22 microticks
(window 0). Window 1 shows the external clock state
correction terms determined by the time master node in
Cluster 1 which are in the range of 5 microticks. Note
that the external clock state correction terms are
positive which indicates that the cluster time of Cluster
1 proceeds faster than that of Cluster 0 (we know that
from Experiment 1). Therefore, all nodes in Cluster 1
have periodically to slow down their local clocks to
keep in pace with the cluster drift rate of Cluster 0.
Finally, window 2 shows the cluster drift rate of
Cluster 1 which is 7x10-6s/s. Not surprisingly, this is
equal to the cluster drift rate of Cluster 0 (Experiment
1) whose cluster time serves as reference time for
Cluster 1.

V.4. Experiment 3: Fault-tolerant clock state
correction and central clock rate correction -

single-cluster system

In Experiment 3, we add a central clock rate
correction algorithm to the fault-tolerant clock state
correction algorithm to achieve a tighter synchronism
among the clocks in a cluster.

For this purpose, we introduce the notion of a rate
master node. A rate master node is a node whose local
clock serves as a reference for the clock state and the
clock rate of the other clocks in its cluster (that are
referred to as time keeping nodes).

The combined fault-tolerant clock state and central
clock rate correction algorithm works as follows:

• The rate master node and the time keeping
nodes execute the fault-tolerant clock state
correction algorithm as described in Section III.

• The time keeping nodes use the time difference
capturing values from the rate master node to
adjust their clock states and clock rates to that of
the rate master node. This state and rate
adjustment has to be bounded such that it does
not interfere with the internal clock
synchronization algorithm4 [29].

4 The state and rate correction at the time-keeping nodes is bounded
to one microtick per TDMA round.

Fig. 6 Fault-tolerant clock state correction - single-cluster system.

Fig. 7 Fault-tolerant clock state correction - multi-cluster system.

A detailed description of the combined algorithm as
well as validation experiments with a TTA hardware
cluster are presented in [28].

We will now analyze the performance of the
combined algorithm by comparing the achievable
precision of Cluster 0 and Cluster 1 to the results of
Experiment 1. We use Node 2 as the rate master node
in Cluster 0 and Node 4 as the rate master node in
Cluster 1.

Figure 8 shows the results for Experiment 3. The
combined algorithm improves the precision of Cluster
0 by 300% from 14 microticks to 4 microticks
(window 0) and that of Cluster 1 by 500% from 20
microticks to 4 microticks (window 2). The cluster
drift rate of Cluster 0 is -4x10-6s/s (window 1) and the
cluster drift rate of Cluster 1 is 4x10-6s/s (window 3). It
can be seen from Table V that the cluster drift rates of
both Cluster 0 and Cluster 1 follow the clock drift rates
of their rate master nodes.

V.5. Experiment 4: Fault-tolerant clock state
correction and central clock rate correction -

multi-cluster system

The setup for Experiment 4 is very similar to the
setup used for Experiment 2. Cluster 0 and Cluster 1
are connected via a gateway (Section III) to a 2-cluster
system. The gateway consists of the gateway node
(Node 0) in Cluster 0 and of the time master node
(Node 4) in Cluster 1. The time master node in Cluster
1 is also the rate master node for Cluster 1.

The difference to Experiment 2 is that clock
synchronization is performed using the combined clock
state and clock rate correction algorithm as described in
Section V.

Like in Experiment 2, the time master node in
Cluster 1 is externally synchronized to the gateway
node in Cluster 0. The time master node in Cluster 1
periodically retrieves the local time from the gateway
node in Cluster 0 and adjusts its clock state and clock
rate to that of the gateway clock5.

From the point of view of Cluster 0, the time master
node in Cluster 0 behaves like a time keeping node.
The time master node (that is also the rate master node
for Cluster 1) does not need to distribute a time
message to the time keeping nodes like in Experiment
2. The time keeping nodes learn from the state and rate
change at the time master node from the next time
difference capturing value obtained from the time
master node. Like in a single-cluster system, this state
and rate change of the rate master node is handled by
the combined clock state and clock rate correction
algorithm. No explicit means for external clock
synchronization are necessary at the time keeping
nodes.

This approach integrates internal and external clock
synchronization into one algorithm: within a cluster, all
nodes establish an internally synchronized global time
base that is externally synchronized to the clock state

5 For not to interfere with the internal clock synchronization
algorithm, the state and rate correction at the time master node is
bounded to one microtick per TDMA round.

and the clock rate of the rate master node. The rate
master node may be
• externally synchronized to a time standard like a

GPS [30] receiver (like Node A1 in Cluster A in
Figure 1)

• externally synchronized to the global time of
another cluster (like Node B5 in Cluster B in
Figure 1)

• not externally synchronized at all.
Further, this approach reduces the need for high-

quality oscillators in distributed real-time systems. Due
to the periodic rate adjustment at the time keeping
nodes, the achievable precision does not depend on the
systematic drift rates of the node clocks. Experimental
results show that the short-term stability of crystal
oscillators of average quality6 is in the range of several
hours [31]. This is remarkably longer than the clock
rate adjustment period. With the exception of the rate
master node that should be equipped with a high-
quality oscillator, the time keeping nodes may deploy
cheaper oscillators with a wider drift rate margin and a
poorer long-term stability than high-quality (and more
expensive) oscillators. This is meaningful in a market
of mass production like the emerging automotive
market for drive-by-wire systems, where the cost of
every single component is scrutinized in order to find
alternatives that are less costly [28].

Figure 9 shows the results for Experiment 4. The
combined algorithm improves the precision of the 2-
cluster system by 400% from 22 microticks to 5
microticks (window 0). The bounded clock state
corrections (one microtick per TDMA round) at the
time master node in Cluster 1 (window 1) according to
the deviations from the gateway node in Cluster 0 are
sufficient to maintain the system precision of 5
microticks . The system drift rate of the 2-cluster
system equals -4x10-6s/s. According to Table V, this is
exactly the clock drift rate of the rate master node
(Node 2) in Cluster 0 whose clock serves as a state and
rate reference for the 2-cluster system.

VI. Conclusion

This paper presents a simulation model for time-
triggered distributed real-time systems. It provides
detailed information about the structure and the
features of the simulation model. It also provides a
simulation case study in the course of which a clock
synchronization algorithm was developed that
integrates internal and external clock synchronization
in distributed systems and that remarkably improves

6 The oscillators used for the case study had a nominal frequency of
10Mhz and a frequency stability of 100ppm.

Fig. 8 Fault-tolerant clock state correction and central clock rate
correction - single-cluster system.

Fig. 9 Fault-tolerant clock state correction and central clock rate
correction - multi-cluster system.

system precision while reducing the need for high-
quality oscillators.

Beside the simulation of clock synchronization
algorithms in distributed systems, SIDERA has been
used for the investigation of startup algorithms and the

transition from asynchronous to synchronous operation
in multi-cluster real-time systems [32] and for the
investigation of the impact of transient communication
system outages (blackouts) on the stability of clock
synchronization in the TTA [27].

Currently SIDERA supports the analysis of a clock
rate calibration mechanism used for the Time-
Triggered Ethernet TTE [33] as well as for the
investigation of the stability of the FlexRay clock
synchronization algorithm in system configurations
used for typical automotive applications [34].

Acknowledgements

This work was supported by the Austrian Science
Fund, FWF, under project number P16638.

References

[1]Ulrich Schmid, Bettina Weiss, Günther Gridling and Klaus
Schossmaier, A Unified Approach for Simulation and
Experimental Evaluation of Fault-Tolerant Distributed Systems,
Proceedings of the IASTED International Conference on
Applied Modelling and Simulation, 1999.

[2]M. C. Little and D. L. McCue, Construction and Use of a
Simulation Package in C++, C User's Journal, Vol. 12, No. 3,
1994.

[3]T. Galla and R. Pallierer, Cluster simulation-support for distributed
development of hard real-time systems using TDMA-based
communication, Proceedings of the 11 th Euromicro
Conference on Real-Time Systems, pp. 150-157, 1999.

[4]Thomas M. Galla, Cluster Simulation in Time-Triggered Real-Time
Systems, Ph.D. Thesis, Dept. Computer Engineering,
 University of Technology, Vienna, Austria, 1999.

[5]R. Pallierer, Validation of Distributed Algorithms in Time-
Triggered Systems by Simulation, Ph.D. Thesis, Dept. Computer
Engineering, University of Technology, Vienna, Austria, 2000.

[6]G. Bauer, Implementation and Evaluation of a Fault-Tolerant
Clock Synchronization Algorithm for TTP/C, Master Thesis,
Dept. Computer Engineering, University of Technology,
Vienna, Austria, 1999.

[7]E. Anceaume and I. Puaut, Performance Evaluation of Clock
Synchronization Algorithms, Technical Report No. 3526,
Institut de Recherche en Informatique et Systemes Aleatoires,
www.irisa.fr, October 1998.

[8]M. M. de Azevedo and D. M. Blough, Software-Based Fault-
Tolerant Clock Synchronization for Distributed UNIX
Environments, Technical Report No. ECE 94-03-01, Dept.
Electrical and Computer Engineering, University of California,
Irvine, March 1994.

[9]A. V. Schedl, Design and Simulation of Clock Synchronization in
Distributed Systems, Ph.D. Thesis, Dept. Computer
Engineering, University of Technology, Vienna, Austria, 1996.

[10] A. V. Schedl, The Simulation of Multicluster Clock
Synchronization Strategies, Technical Report No. 22, Dept.
Computer Engineering, University of Technology, Vienna,
Austria, 1995.

[11] A. V. Schedl, Introduction to the ClockSync Project, Technical
Report No. 19, Dept. Computer Engineering, University of
Technology, Vienna, Austria, 1994.

[12] G. A. Alvarez and F. Cristian, Simulation-Based Testing of
Communication Protocols for Dependable Embedded Systems,
Journal of Supercomputing, Kluwer Academic Publishers,
1999.

[13] G. A. Alvarez and F. Cristian, Simulation-Based Test of Fault-
Tolerant Group Membership Service, Proceedings of the 12th
Annual IEEE Conference on Computer Assurance,
Gaithersburg, Maryland, June 1997.

[14] B. Altuntas and Richard A. Wysk, A framework for adaptive
synchronization of distributed simulations, Proceedings of the
36th conference on Winter simulation, pp. 317-377,
Washington, D.C., 2004.

[15] J. Shamsi and M. Brockmeyer, DSSimulator: Achieving million
node Simulation of Distributed Systems, Applied
Telecommunication Symposium. Spring Simulation Conference,
San Diego, CA, April 2005.

 [16] Hermann Kopetz and Günther Bauer, The Time-Triggered
Architecture, Proceedings of the IEEE, Vol. 91, No. 1, pp.
112-126, 2003.

[17] TTTech, Time-Triggered Protocol TTP/C, Specification,
TTTech Computertechnik AG, 2003, available at
www.tttech.com.

[18] FlexRay Consortium, FlexRay Communications System
Protocol Specification Version 2.1, 2005, available at
www.flexray.com.

[19] Christof Fetzer and Flaviu Cristian, An Optimal Internal Clock
Synchronization Algorithm, Compass '95: 10th Annual
Conference on Computer Assurance (National Institute of
Standards and Technology), pp. 187-196, 1995.

[20] Klaus Schossmaier and Bettina Weiss, An Algorithm for Fault-
Tolerant Clock State and Rate Synchronization, Symposium on
Reliable Distributed Systems, pp. 36-47, 1999.

[21] H. Kopetz, Real-Time Systems: Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, ISBN 0792398947, 1997.

[22] Christof Fetzer and Flaviu Cristian, Integrating External and
Internal Clock Synchronization, Real-Time Systems, Vol. 12,
No. 2, pp.123-171, 1997.

[23] G. Bauer and M. Paulitsch, External Clock Synchronization in
the TTA, Technical Report No. 3, Dept. Computer Engineering,
University of Technology, Vienna, Austria, 2000.

[24] Matti A. Hiltunen and Richard D. Schlichting, Properties of
Membership Services, Second International Symposium on
Autonomous Decentralized Systems (ISADS'95), 1995.

[25] Henrik Lonn, Initial synchronization of TDMA
communication in distributed real-time systems, The 19th
International Conference on Distributed Computing Systems
(ICDCS '99), pp. 370-379, Austin, TX, May 1999.

[26] J. Lundelius and N. Lynch, A new Fault-tolerant Algorithm for
Clock Synchronization, Proceedings of the 3rd annual ACM
symposium on Principles of Distributed Computing, pp. 75-88,
1984.

[27] Alexander Hanzlik, Investigation of Fault-Tolerant Multi-
Cluster Clock Synchronization Strategies by Means of

 Simulation, Ph.D. Thesis, Dept. Computer Engineering,
 University of Technology, Vienna, Austria, 2004.

[28] Hermann Kopetz, Astrit Ademaj and Alexander Hanzlik,
Combination of clock-state and clock-rate correction in fault-
tolerant distributed systems, Real-Time Systems, Vol. 33, pp.
139-173, Springer Netherlands, July 2006.

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11241-006-6885-9
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11241-006-6885-9
http://www.flexray.com/
http://www.irisa.fr/

[29] H. Kopetz, A. Krüger, D. Millinger and A. Schedl, A
Synchronization Strategy for a Time-Triggered Multicluster
Real-Time System, 14th Symposium on Reliable Distributed
Systems, Bad Neuenahr, Germany, September 1995.

[30] P.H. Dana, Global Positioning System (GPS) time dissemination
for real-time applications, Real-Time Systems, Vol. 12, pp.
9-40, January 1997.

[31] A. V. Schedl, The Short-Term Stability of Crystal Oscillators:
Experimental Results, Technical Report No. 1, Dept. Computer
Engineering, University of Technology, Vienna, Austria, 1995.

[32] Wilfried Steiner, Michael Paulitsch and Alexander Hanzlik,
Structuring of TTA Systems and Initial Synchronization,
Technical Report No. 17, Dept. Computer Engineering,
University of Technology, Vienna, Austria, 2003.

[33] Hermann Kopetz, Astrit Ademaj, Petr Grillinger and Klaus
Steinhammer, The Time-Triggered Ethernet (TTE) Design, 8th
IEEE International Symposium on Object-oriented Real-time
distributed Computing (ISORC), Seattle, Washington, 2005.

[34] Alexander Hanzlik, Stability and Performance Analysis of
Clock Synchronization in FlexRay, International Review on
Computers and Software, Vol. 1, No. 2, pp. 146-155, September
2006.

Authors’ information
1, Vienna University of Technology, Real-Time Systems Group.
Treitlstr. 1-3/182-1, 1040 Vienna, Austria,
hanzlik@vmars.tuwien.ac.at.

A. Hanzlik was born 1970 in Vienna,
Austria. He received the master degree in
Computer Science in 1995 and the Ph.D. in
Technical Sciences in 2004, both from the
Vienna University of Technology, Vienna,
Austria.
Alex has done some research in the field of
medical expert systems in the course of his

master thesis. His main current research interests are fault-tolerant
clock synchronization in distributed real-time systems and simulation
of dependable real-time architectures.
Dr. Hanzlik is currently under contract at Siemens Austria in his
professional life, where he works as a project manager mainly
concerned with design and implementation of software and firmware
for embedded systems for telecommunication and process control
applications.

	I.Introduction
	II.Basic concepts
	III.Implementation concepts
	IV.SIDERA features
	V.Simulation of clock synchronization algorithms - a case study
	VI.Conclusion
	Acknowledgements
	References
	Authors’ information

