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Abstract –  SIDERA  (SImulation  model  for  DEpendable  Real-time  Architectures)  is  a  
simulation  model  for  time-triggered  distributed  real-time  systems.  It  is  based  on  the  Time-
Triggered Architecture TTA and allows the simulation of large-scale real-time systems. SIDERA  
provides simulation of various real-time protocol services like system startup, communication,  
clock synchronization, membership service and protocol error detection and handling. A failure  
simulation module allows testing the stability of the systems under investigation in the presence  
of node failures. This paper is about basic concepts of time-triggered distributed systems and the  
implementation of these concepts in a simulation environment. Further, it provides a case study  
of  clock  synchronization  in  distributed  systems  and  presents  an  approach  that  significantly  
improves  the  synchronism  in  a  distributed  system  while  reducing  the  need  for  high-quality  
oscillators.
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I. Introduction

Simulation is a reasonable, powerful and frequently 
used  mean  for  gaining  insight  into  the  functionality 
and structure of distributed systems. SIDERA has been 
developed  for  the  simulation  of  large-scale  time-
triggered  systems,  with  the  focus  on  simulation  of 
fault-tolerant  clock  synchronization  algorithms.  The 
paper is structured as follows: the rest of this section 
consists of some related work, the system structure that 
we are dealing with and a short overview of the Time-
Triggered  Architecture.  Section  2  introduces  the  five 
basic concepts of the Time-Triggered Protocol TTP that 
are  essential  for  the  simulation.  Section  3  describes 
how these basic concepts are implemented in SIDERA. 
Section  4  gives  an  overview  of  the  features  that 
SIDERA provides. Section 5 presents a simulation case 
study  and  a  clock  synchronization  algorithm  that 
remarkably  improves  the  synchronism  among  an 
ensemble of clocks in a distributed system. Section 6 
concludes the paper.

I.1. Related work

[1] surveys SimUTC, a framework for simulation of 
round-based clock synchronization algorithms in fault-
tolerant  distributed  real-time  systems,  using  the 
discrete-event  simulation  package  C++  SIM  [2]. 
SimUTC  has  been  developed  in  the  course  of  the 
SynUTC  project1 which  is  devoted  to  establishing  a 
time  service  for  fault-tolerant  distributed  real-time 
systems.  The  toolkit  incorporates  either  real  network 

1 SYNUTC. http://www.auto.tuwien.ac.at/Projects/SynUTC.

controllers or their simulated counterparts. 
Cluster  simulation  ([3],  [4])  provides  a  cheap  and 

useful  technique  to  test  single  nodes of  a distributed 
application in isolation without the need to setup  the 
whole system. The idea is to simulate the target system 
for  the  node  under  test  by  means  of  one  or  more 
physical  nodes  connected  to  the  test  node  via  a 
dedicated logical line interface.

[5] presents detailed investigations of communication 
properties of the Time-Triggered Protocol TTP/C based 
on a deterministic fault injection approach with regard 
to  various  kinds  of  faults  on  the  communication 
medium  and  corresponding  error  detection  latencies 
using TTPSIM, a simulation environment for TTP/C.

[6] investigates the performance and the limits of the 
clock  synchronization  algorithm  used  in  the  Time-
Triggered Protocol TTP/C. The algorithm is analyzed 
using a VHDL simulation of the hardware the protocol 
is  executed  on.  The  system  response  (i.e.  achieved 
synchrony within a cluster and cluster drift  rate from 
real-time)  to  altered  parameters  is  presented  and 
discussed.

 [7] analyzes  the  performance  of  several 
deterministic  clock  synchronization  algorithms  in  the 
presence  of  clock  crash,  processor  crash,  timing, 
Byzantine, network omission and network performance 
failures.  A  simulation  model  consisting  of  n nodes 
connected  through  a  point-to-point  fully  connected 
network is used for the analysis.

[8] presents a software-based model for fault-tolerant 
clock  synchronization  in  distributed  UNIX 
environments  and  analyzes  the  performance  of  a 
software-based implementation according to variations 
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in CPU and network load.
[9] compares  the  performance  of  different  clock 

synchronization  algorithms  and  clock  correction 
strategies  with  regard  to  achievable  synchrony  by 
means of simulation.  [10] deals with the simulation of 
multi-cluster  clock  synchronization  strategies  in  the 
course  of  the  ClockSync  project  [11],  which  is 
concerned with the development of a large simulation 
model for the synchronization of clocks in a distributed 
real-time system.

[12] presents  the  CESIUM tool  that  addresses  the 
problem  of  testing  communication  protocols 
considering  various  obstacles  to  testing  such  as 
observability,  controllability,  deterministic  experiment 
control and absence of the probe effect.  The tool has 
been  used  for  various  testing  experiments  on 
implementations  of  protocols,  covering  group 
membership  protocols  [13] and clock synchronization 
algorithms.

[14] presents a discrete event distributed simulation 
framework that addresses the increased complexity  of 
simulation  models  and  the  related  modeling  which 
demands  the  execution  of  simulations  on  multiple 
processors.  The  framework  supports  easy  and  fast 
development  of  distributed  simulations  and  efficient 
adaptive synchronization of simulation processes.

[15] introduces  DSSimulator,  an  object  oriented 
simulation  model  which  provides  a  scalable  and 
flexible  platform  for  the  simulation  of  distributed 
systems.  It  deploys  different  distributed  applications 
and is designed for the simulation of a large number of 
nodes on a single workstation.

I.2. System structure

We assume that a system can be built by repetitive 
use of the following components:

Fig. 1 System Structure.

Node. A computational unit that executes a part of a 
distributed  application.  Each  node  maintains  a  local 
clock.

Communication network. A shared communication 
resource connecting nodes.

Cluster. A  set  of  spatially  separated  nodes  that 
exchange messages via a communication network and 
that execute a distributed application in a cooperative 
manner.

Gateway. A  connection  between  two  clusters.  It 
consists  of  a  pair  of  nodes,  one  in  each  cluster,  that 
communicate over a dedicated communication link.

Figure  1 shows an example for a system consisting 
of two clusters connected via a gateway.

I.3. The Time-Triggered Architecture

The  conceptual  basics  of  SIDERA are  the  Time-
Triggered  Architecture  TTA   [16] and  the  Time-
Triggered  Protocol  TTP  [17],  both  developed  at  the 
Vienna University  of Technology for  over more than 
twenty years.

Fig. 2 TTA cluster.

Figure  2 depicts a cluster of the TTA. It consists of 
a set of Fault-Tolerant Units (FTUs) that communicate 
using  the  Time-Triggered  Protocol  (TTP).  The  host 
application  covers  the  application  specific 
functionalities  of  the  FTU, whereas the  TTP handles 
protocol specific tasks (startup, clock synchronization, 
communication  etc.).  Access  to  the  communication 
network  is  controlled  by  a  cyclic  time-division 
multiple access (TDMA) scheme derived from a global 
notion of time. An FTU can consist of one, two or more 
nodes and provides the specified service without delay 
even after the failure of a node.

II. Basic concepts

This section gives an overview of the basic concepts 
of the simulation model.

II.1. Communication medium access control 

In distributed systems with a shared communication 
resource the access to the communication medium has 
to be regulated such that  all  nodes are able to deliver 
messages  within  an  upper  bound  in  time.  In  time-
triggered protocols like TTP  [17] or FlexRay  [18], the 
access to the communication medium is controlled by a 
collision-free, Time Division Multiple Access strategy 
(TDMA). Real-time is divided into slots. Each node is 
assigned one slot during  which  it  is allowed to send. 
The sequence of slots in which each node sends at most 
one message forms a TDMA round.

 Figure 3 shows the principle of operation.

Fig. 3 TDMA scheme.
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II.2. Global time

A  key  issue  in  time-triggered  systems  is  the 
establishment of a fault-tolerant, global time base using 
a  clock  synchronization algorithm ([7],  [19],  [20]).  A 
common notion of time among the nodes in a cluster is 
a  prerequisite  for  a  TDMA  access  strategy  to  the 
communication medium.

Internal  clock  synchronization.  The  task  of 
internal  clock synchronization is to maintain  a global 
time base that  all  nodes agree on.  The  TTP  protocol 
utilizes the concept of microticks and macroticks  [21]. 
Microticks  correspond  to  the  local  oscillator  ticks  at 
each node, while macroticks represent the global notion 
of time used to trigger and  order global  events.  Each 
node generates a macrotick  by  selecting  a number  of 
microticks  and  synchronizes  its  macrotick  by 
dynamically  increasing  or  decreasing  the  number  of 
microticks per macrotick, according to the clock state 
correction  term  that  is  delivered  periodically  by  the 
clock synchronization algorithm. All nodes adjust their 
local  clocks  at  the  same  point  in  global  time.  The 
internally  synchronized  global  time proceeds in  units 
of  macroticks.  The  macrotick  counter  at  each  node 
represents  the node's view of the global  time (cluster 
time).  Each  node  uses the  macrotick  counter  for  the 
timestamping and ordering of events that occur in the 
distributed system.

External  clock  synchronization.  The  task  of 
external clock synchronization is to bring the internally 
synchronized cluster time into agreement with external 
reference time. In a cluster there has to be at least one 
node  that  provides  reference  time  to  the  other  nodes 
within  its cluster, referred to as  reference time server 
[22] or time master node [23], respectively.

Multi-cluster clock synchronization. Multi-cluster 
clock synchronization aims at bringing the global times 
of  an  ensemble  of  clusters  into  agreement.  An 
unidirectional  flow  of timing  information  is provided 
via the  gateways.  The  cluster times are synchronized 
by means of external clock synchronization. In Figure 
1, the global time of cluster A (provided by node A6) 
serves as reference time for cluster B (node B5 is the 
reference time server for cluster B).

II.3. Membership

Membership. A membership service provides each 
node with a consistent view of the operational state of 
the other nodes [24].

II.4. Protocol error detection and node deactivation

Each  node  in  the  system  periodically  checks 
whether it  fulfills  the conditions for correct operation 
dictated by the communication protocol and deactivates 
itself upon detection of a protocol error.

II.5. System startup and node reintegration

Whereas clock synchronization aims at maintaining 
a global  time base within  a distributed system, many 
clock  synchronization  algorithms  require  that  the 
clocks are initially  synchronized. This is the task of a 
startup  algorithm  [25].  Further,  a  mechanism  is 
required  for  the  reintegration  of  nodes  that  have 
stopped  operation  due  to  the  detection  of  a  protocol 
error.

III. Implementation concepts

This  section  gives  implementation-specific  aspects 
of the basic concepts introduced in the last section.

III.1. Communication medium access control 

Each simulated node maintains a quartz oscillator. A 
microtick counter is incremented after a given number 
of oscillator ticks. The duration of the oscillator tick is 
dependant on a node-individual  sys_drift value (Table 
I)  that  determines  whether  the  clock  of  this  node  is 
running fast or slow against real-time.

Real-time denotes the progression of physical  time 
that can be measured using clocks. In a real system, to 
be able to classify clocks as fast or slow, it is necessary 
to define a reference clock that serves as a standard for 
time measurement in this system and to relate the clock 
rate  of  the  reference clock  to  the  rates of  the  clocks 
under consideration.  In  a simulation environment,  the 
observed rates of the simulated clocks are related to the 
progression  of  simulation  time  which  serves  as  a 
reference clock.

A  macrotick  counter  is  incremented  after  a  given 
number  of  microticks.  The  macrotick  counter  at each 
node represents the node's view of global time.

The access to the communication medium is based 
on a Time Division Multiple Access (TDMA) strategy. 
Real-time  is  divided  into  slots.  Slots  are  assigned  to 
nodes.  A  list  of  slot  entries  forms  a  communication  
schedule.

TABLE I
NODE SPECIFIC OFFLINE PARAMETERS

Simulation model
 variable Meaning

nodeID node identifier
OSC oscillator ticks per microtick
LCP microticks per macrotick

sys_drift systematic drift of the node's 
clock

gateway_node gateway node flag
time_master_node time master node flag

free_running_MT_int free running macroticks used for 
internal clock synchronization

free_running_MT_ext free running macroticks used for 
external clock synchronization

CF cold start allowed flag

cold_start_max maximum number of frames 
to be sent in state COLD START
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Each node traverses the communication schedule in 
a cyclic manner.  A node enters a slot if  its macrotick 
counter  reaches  slot_start_time (Table  II).  If  nodeID 
(Table I) is equal to LogicalSenderName, the node is a 
sender in the current slot and sends a message when its 
macrotick  counter  reaches  msg_send_time.  Else  the 
node is a receiver.  Each node is  assigned  one slot in 
which it is allowed to send.

TABLE II
SLOT ENTRY IN COMMUNICATION SCHEDULE

Simulation model
 variable Meaning

      slot_start_time start time of slot in macroticks
    LogicalSenderName nodeID of the sender in this slot

msg_send_time message send time in macroticks
CS Clock synchronization flag
SYF Time difference capturing flag

RA Reintegration allowed flag

III.2. Global time 

In a time-triggered distributed system all nodes have 
to  agree  on  a  global  notion  of  time.  All  nodes 
periodically  adjust  their  local  clocks  according  to  a 
clock state correction term that is delivered by a clock 
synchronization algorithm.

Time  difference  capturing.  A  node  has  to  know 
the deviation of its local clock to the other clocks to be 
able to keep synchronized.  Time difference capturing 
is  the  process  of  estimating  the  deviation  of  a  local 
clock to a remote clock. In a slot with the SYF flag set 
(Table II), all nodes use the arrival time of an incoming 
message  for  the  estimation  of  the  deviation  of  their 
clocks  from  the  sender's  clock.  They  calculate  the 
expected  arrival  time  (msg_send_time,  Table  II)  in 
terms  of  local  microticks  and  compare  it  to  the 
observed arrival time (the microtick counter at message 
reception  time).  The  result  is  the  deviation  from the 
sender's  clock in  terms of microticks and is stored in 
deltas (Table  III),  a  push-down  stack  of  depth  four. 
Each  time  an  estimate  is  added  to  deltas,  the  oldest 
estimate is discarded.

TABLE III
NODE SPECIFIC RUNTIME PARAMETERS

Simulation model
 variable Meaning

deltas[4] time difference capturing stack

slot_number current slot in communication 
schedule

 corr_term_int current internal clock correction 
term

corr_term_ext current external clock correction 
term

time_message current deviation from external 
reference time

frame_ack_counter frame acknowledgement counter
frame_inv_counter frame invalid counter
frame_fail_counter frame fail counter

      iframe_counter frames sent in state COLD 
START

c_state current C-State of controller

 

Internal  clock  synchronization.  At  the  end  of  a 
slot with the CS flag set (Table II), all nodes calculate 
an internal clock state correction term corr_term_int on 
the base of the estimates contained in  deltas using the 
fault-tolerant  average  (FTA)  algorithm  [26]:  the 
minimum  and  the  maximum  estimates  are  discarded, 
the internal  correction term is the average of the two 
remaining  estimates.  Positive  values of  corr_term_int 
indicate  that  the  local  clock is  running  fast,  negative 
values  that  the  local  clock  is  running  slow  against 
global time.

Application of the internal clock state correction 
term.  All  nodes  periodically  adjust  the  number  of 
microticks per macrotick  according to  corr_term_int. 
Every  free_running_MT_int (Table  I)  macroticks  one 
microtick  is  corrected  by  manipulation  of  the  local 
microtick counter until corr_term_int is exhausted. The 
local  clocks  run  free  afterwards  until  the  next 
synchronization instant  marked in  the communication 
schedule.

External  clock  synchronization.  External  clock 
synchronization  is  done  by  means  of  inter-cluster 
communication  via  gateways  (Figure  1).  A  gateway 
consists of two interconnected nodes, a  gateway node 
in  one  cluster  and  a  time  master  node in  another 
cluster. A node with the gateway_node flag set (Table 
I)  provides  its  local  time  in  terms  of  seconds  to  its 
associated  time  master  node.  A  node  with  the 
time_master_node flag set calculates the deviation from 
gateway  node time  to local time  in  terms of  seconds 
and distributes it to the other nodes (time_message) at 
its  msg_send_time (Table  II).  Upon  reception  of  a 
time_message all nodes calculate an external clock state 
correction term  corr_term_ext (Table  III) in  terms  of 
local microticks.

Application of the external clock state correction 
term.  All  nodes  periodically  adjust  the  number  of 
microticks  per  macrotick  according  to corr_term_ext. 
Every  free_running_MT_ext (Table  I) macroticks one 
microtick  is  corrected  by  manipulation  of  the  local 
microtick  counter  until  corr_term_ext is  exhausted. 
The local clocks run free afterwards until the reception 
of the next time_message.

III.3. Membership 

The membership  service keeps the nodes informed 
about the operational  state of the other nodes in  their 
cluster.

Message format. Each active node sends a message 
(frame)  once  per  TDMA  round  containing  its 
controller state (C-state).

TABLE IV
CONTROLLER STATE (C-STATE)

Simulation model
 variable Meaning

Time Global time in macroticks

MEDL_Entry current slot in communication 
schedule

 Membership Membership vector
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Membership.  The  membership  vector  is  a  bit-
vector containing one bit entry for each node.  Active 
nodes are set to 1 and inactive nodes are set to 0. The 
membership vector represents a node's view of the state 
of  all  nodes  in  the  cluster.  A  receiver  node  adds  a 
sender node to the membership when it receives a valid 
frame during the communication schedule slot assigned 
to the sender. A frame is valid at the receiver if sender 
and receiver agree in Time (with a maximum deviation 
of one macrotick),  MEDL_entry and  Membership, else 
invalid.  A  receiver  removes  a  sender  from  the 
membership  if  it receives an  invalid frame during the 
slot of the sender or no frame at all (null frame).

Clique avoidance. The clique avoidance logic shall 
prevent a cluster from being partitioned into different 
subsets (cliques) that are not able to communicate with 
each other. Each node maintains a  frame_ack_counter, 
a  frame_inv_counter and a  frame_fail_counter (Table 
III).  Each  node  increments  the  frame_ack_counter  
when it receives a valid frame, the  frame_inv_counter 
when  it  receives  an  invalid  frame  and  the 
frame_fail_counter if it receives no frame at all in the 
current slot. 

When  a node enters  its  sending  slot (i.e.  once per 
TDMA  round),  it  checks  the  counters.  If 
frame_ack_counter  is  bigger  than  the  sum  of 
frame_fail_counter and  frame_invalid_counter,  it 
clears the counters and remains active. Else the node is 
in  disagreement  with  the  majority  of  the  cluster  and 
stops operation.

III.4. Protocol error detection and node deactivation 

Each node stops operation upon detection of one of 
the following protocol errors:

Clock  synchronization  error.  When  the  internal 
clock state correction term exceeds half the duration of 
a macrotick, the node detects a synchronization error.

Acknowledgement  error.  The  clique  avoidance 
logic has detected that the node is in disagreement with 
the majority of the cluster (Section III).

Communication  system  blackout.  The  node 
detects that no other node has sent a frame during the 
last TDMA round (i.e. the sum of  frame_ack_counter 
and frame_invalid_counter is 0, Table III).

III.5. System startup and node reintegration 

System  startup  (after  initial  power-on  or  after  a 
communication  system  blackout)  and  node 
reintegration (after the detection of a protocol error) are 
based on a four-state model (Figure 4).

Timeouts. The following node-specific timeouts are 
of importance for correct operation of the node during 
startup and reintegration phase.
• The  startup  timeout τi

startup  of  a  node  which  is 
assigned TDMA slot  i is equal to the sum of the 
durations of all slots prior to slot i.

τ i
startup

=0 : i=0

τ i
startup=∑ j=1

i
τ j−1

slot : i0
(1)

τj
slot is  the  duration  of  the  slot  assigned  to  node  j.

• The  cold  start  timeout τi
coldstart of  a node  i is  the 

sum of its startup timeout τi
startup and the duration of 

a single TDMA round τround.

τ i
coldstart

=τ i
startup

τ round (2)

• The listen timeout τi
listen of a node is the sum of its 

startup  timeout  τi
startup and  the  duration   of  two 

TDMA rounds τround.

τ i
listen

=τ i
startup

2×τ round (3)

This choice for the listen timeout ensures that the 
longest cold start timeout is shorter than the shortest 
listen timeout [17].

Node states and state transitions.  Figure  4 shows 
the states and state transitions of a node.

Fig. 4 Node states 
and state transitions.

• A node transits to the FREEZE state
o after  power-on  of  the  system  (start  of 

simulation) or
o upon detection of a protocol error (Section 

III).
  The node initializes its internal data structures, 

starts  the  listen  timeout  and  transits  to  the 
LISTEN state.

• A node transits to the LISTEN state
o after  initialization  of  its  internal  data 

structures.
Upon  expiration  of  the  listen  timeout  the  node 

restarts  the  listen  timeout  and  remains  in  state 
LISTEN if

o no  valid  frame  was  received  from  any 
other node and

o the  node  is  not  allowed  to  enter  COLD 
START state.

• A node transits  to the COLD START  state upon 
expiration of the listen timeout if
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o the  node  is  allowed  to  enter  COLD 
START state (CF flag is set, Table I) and

o iframe_counter (Table  III)  is  less  than 
cold_start_max (Table I).

The  node  sends  a  frame,  increments 
iframe_counter and starts the cold start timeout. 

Upon  expiration  of  the  cold start  timeout  the 
node  increments  iframe_counter,  sends  another 
frame and remains in state COLD START if

o no  valid  frame  was  received  from  any 
other node and

o iframe_counter is  less  than 
cold_start_max.

If the node is not allowed to send another frame, its 
starts the listen timeout and transits to state LISTEN.

• A node transits to the ACTIVE state  
o from state LISTEN

upon reception of a valid frame (Section 
III).  The  C-state  (Table  IV) is    copied 
from the received frame.

o from state COLD START
upon  reception  of  a  valid  frame.  The 
iframe_counter (Table III) is cleared.

III.6. Failure simulation 

SIDERA  provides a failure simulation module that 
allows  testing  the  stability  of  the  systems  under 
consideration in the presence of node failures. A node 
failure occurs when a node stops operation due to the 
detection of a protocol error (Section III).

The following node failures can be modeled:
• Crash failures

  A node stops operation.
• Transmission failures

  A node sends an invalid frame at its message send
   time  defined  in  the  communication  schedule
   (Section III).
• Clock state failures

  The  microtick  counter  at  a  node  changes  to  a
 specified value.
• Clock rate failures

  The  systematic  drift  rate of a node changes to a 
specified value.

A  node  failure  script consists  of  an  arbitrary 
sequence of  node failure entries and allows a node to 
fail  in  different  ways  during  one  simulation 
experiment. 

A node failure entry defines
• the kind of node failure
• the  point  in  simulation  time  at  which  the  node 

failure occurs
• the duration of the node failure
• if  the  node  recovers  from the  failure  or not  (for 

simulation of transient and permanent failures)

IV. SIDERA features

SIDERA provides
• simulation of single-cluster and multi-cluster time-

triggered systems
• simulation  of  real-time  protocol  services  (system 

startup,  communication,  clock  synchronization, 
membership  service,  protocol  error  detection  and 
handling)

• simulation  of  the  FlexRay  [18] clock 
synchronization algorithm

• node failure simulation
on  a  single  computer  system  with  no  need  for 

special  hardware.  SIDERA  is  written  in  C++  and 
consists  of  a  simulation  runtime  module,  a graphical 
user  interface  for  generation  of  the  simulation  input 
parameters  and  a  graphical  analysis  tool  for 
interpretation of the simulation results (Figure 5).

The GUI and the analysis tool have been developed 
using Qt2, a tool for convenient design of graphical user 
interfaces and cross-platform C++ development.

The  current  version  of  SIDERA  runs  on  LINUX 
platforms (Kernel version 2.6)3.

SIDERA has been validated by means of reference 
tests using a VHDL model of a TTPC/C1 controller in 
course  of  which  it  was  shown  that  the  simulation 
model  follows  the  behavior  of  the  VHDL  reference 
model. The tests and the results can be found in [27].
      

  Fig. 5 SIDERA simulation environment.

V. Simulation of clock synchronization 
algorithms - a case study

We  have  used  SIDERA  for  the  investigation  of 
fault-tolerant  clock synchronization algorithms.  In the 
course of our investigations, we have developed a clock 
synchronization algorithm that combines fault-tolerant 
clock state correction with central clock rate correction. 
This  algorithm  significantly  improves  the  achievable 
precision  in  time-triggered  distributed  systems  while 
reducing  the  need  for  high-quality  oscillators.  The 
algorithm  has  been  validated  by  means  of  hardware 
experiments, using the TTA for a case study [28].

 In this section we consider a 2-cluster system like 
the one depicted in  Figure  1 First,  we will  study  the 
properties of two different  single-cluster systems that 
perform internal clock synchronization using the fault-
tolerant  clock  synchronization  algorithm  of  the  TTA 
(Section  III). We will  then connect the two internally 
synchronized clusters via a gateway  (Section  III) and 
analyze  the  achievable  precision  of  this  2-cluster 
system  using  an  external  clock  synchronization 
algorithm for the TTA [23]. Finally, we will apply our 
new algorithm 

2 Qt is available at www.trolltech.com.
3 A  demo  version  of  SIDERA  is  available  for  download  at 

http://www.vmars.tuwien.ac.at/people/alexhanzlik.html.
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such  that  the  local  clocks  perform  not  only  clock 
state  correction,  but  also clock  rate  correction  during 
the clock synchronization process. We will  show that 
the  algorithm  not  only  improves  the  achievable 
precision in single- and multi-cluster systems, but that 
it  also  integrates  internal  and  external  clock 
synchronization in multi-cluster systems.

V.1.  Experimental setup

Table  V summarizes the  system configuration  that 
we have used for the simulation experiments.

The  numbering  of  clusters,  nodes  and  slots  starts 
from 0.  The  drift  rate  values  describe the  systematic 
drift  of  the  nodes  against  simulation  time.  Negative 
values indicate fast running clocks and positive values 
indicate slow running clocks.

The  figures  used  in  the  descriptions  of  the 
simulation  experiments  consist  of  a  set  of  different 
windows.  The numbering  of the windows starts  with 
0, starting at the top window in each figure. The x-axis 
denotes  the  progression  of  simulation  time  with  the 
same  granularity  for  all  windows  (i.e.  events  on  the 
same x-coordinate in different windows happen at the 
same point in simulation time).

TABLE V

CLUSTER CONFIGURATIONS

Property Cluster 0 Cluster 1

Number of nodes 6 8

Number of TDMA slots 6 8

SYF slots all 0,2,4,6

CS slot 5 6

Slot duration 2ms 1,5ms

TDMA round duration 12ms 12ms

Macrotick duration 1μs 1μs

Simulation time 2s 2s

Clock drift rate window 40ppm 55ppm

Drift rate Node 0 (s/s) -2 x 10-5 -2,75 x 10-5

Drift rate Node 1 (s/s) -1,2 x 10-5 -2 x 10-5

Drift rate Node 2 (s/s) -4 x 10-6 -1,2 x 10-5

Drift rate Node 3 (s/s) 4 x 10-6 -4 x 10-5

Drift rate Node 4 (s/s) 1,2 x 10-5 4 x 10-5

Drift rate Node 5 (s/s) 2 x 10-5 1,2 x 10-5

Drift rate Node 6 (s/s) - 2 x 10-5

Drift rate Node 7 (s/s) - 2,75 x 10-5
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V.2. Experiment 1: Fault-tolerant clock state  
correction - single-cluster system

In  Experiment  1  we  determine  the  achievable 
precision  of  two  clusters  that  perform  fault-tolerant 
clock  state  correction  according  to  the  internal  clock 
synchronization  algorithm  used  in  the  TTA  (Section 
III).

According to Figure 6, Cluster 0 achieves a precision 
of 14 microticks (window 0) and Cluster 1 achieves a 
precision  of  20  microticks  (window  2).  The  cluster  
drift rate is the drift rate of the internally synchronized 
cluster time against simulation time. Cluster 0 shows a 
cluster  drift  rate  of  7x10-6s/s (i.e.  it  is  slow  against 
simulation  time,  window  1);  Cluster  1  has  a  cluster 
drift rate of -4x10-6s/s (i.e. its cluster time proceeds fast 
against simulation time, window 3).

V.3. Experiment 2: Fault-tolerant clock state  
correction - multi-cluster system

In Experiment 2 we connect Cluster 0 and Cluster 1 
via  a gateway  (Section  III) to a 2-cluster system like 
the system shown in Figure 1 The gateway consists of 
the gateway node (Node 0) in Cluster 0 and of the time 
master node (Node 4) in Cluster 1.

The  gateway  provides  a  unidirectional  flow  of 
timing information from the gateway node to the time 
master node. In our experiment, Cluster 1 is externally 
synchronized to the global time of Cluster 0. The time 
master node in Cluster 1 periodically retrieves the local 
time from the gateway  node in  Cluster 0, determines 
the deviation from its local clock to the gateway node 
clock and distributes the deviation to the other nodes in 
its cluster by means of a time message [23]. At a pre-
defined  instant  once  per  TDMA  round,  all  nodes  in 
Cluster  1  calculate  an  external  clock  state  correction 
term  and  apply  it  to  their  local  clocks  to  keep 
synchronized  to  reference  time  provided  by  the 
gateway clock.

Figure 7 shows the results for Experiment 2. The 2-
cluster  system achieves  a  precision  of  22  microticks 
(window 0). Window 1 shows the external clock state 
correction terms determined by the time master node in 
Cluster 1 which are in the range of 5 microticks. Note 
that  the  external  clock  state  correction  terms  are 
positive which indicates that the cluster time of Cluster 
1 proceeds faster than that of Cluster 0 (we know that 
from Experiment  1). Therefore, all nodes in Cluster 1 
have  periodically  to  slow  down  their  local  clocks to 
keep  in  pace with  the  cluster  drift  rate  of  Cluster  0. 
Finally,  window  2  shows  the  cluster  drift  rate  of 
Cluster  1 which  is  7x10-6s/s.  Not surprisingly,  this  is 
equal to the cluster drift rate of Cluster 0 (Experiment 
1)  whose  cluster  time  serves  as  reference  time  for 
Cluster 1.

V.4. Experiment 3: Fault-tolerant clock state  
correction and central clock rate correction - 

single-cluster system

In  Experiment  3,  we  add  a  central  clock  rate 
correction  algorithm  to  the  fault-tolerant  clock  state 
correction algorithm to achieve a tighter  synchronism 
among the clocks in a cluster.

For this purpose, we introduce the notion of a  rate  
master node. A rate master node is a node whose local 
clock serves as a reference for the clock state and the 
clock  rate  of  the  other  clocks  in  its  cluster  (that  are 
referred to as time keeping nodes).

The combined fault-tolerant  clock state and central 
clock rate correction algorithm works as follows:

• The  rate  master  node  and  the  time  keeping 
nodes  execute  the  fault-tolerant  clock  state 
correction algorithm as described in Section III.

• The time keeping nodes use the time difference 
capturing  values  from the  rate  master  node  to 
adjust their clock states and clock rates to that of 
the  rate  master  node.  This  state  and  rate 
adjustment has to be bounded such that it does 
not  interfere  with  the  internal  clock 
synchronization algorithm4 [29].

4 The state and rate correction at the time-keeping nodes is bounded 
to one microtick per TDMA round.



Fig. 6 Fault-tolerant clock state correction - single-cluster system. 

Fig. 7 Fault-tolerant clock state correction - multi-cluster system.



A detailed description of the combined algorithm as 
well  as validation experiments  with  a TTA  hardware 
cluster are presented in [28].

We  will  now  analyze  the  performance  of  the 
combined  algorithm  by  comparing  the  achievable 
precision of  Cluster 0 and  Cluster 1 to the  results  of 
Experiment 1. We use Node 2 as the rate master node 
in  Cluster  0  and  Node 4  as  the  rate  master  node  in 
Cluster 1.

Figure  8 shows the  results  for  Experiment  3.  The 
combined algorithm improves the precision of Cluster 
0  by  300%  from  14  microticks  to  4  microticks 
(window  0) and  that  of  Cluster  1 by  500% from 20 
microticks  to  4  microticks  (window  2).  The  cluster 
drift rate of Cluster 0 is -4x10-6s/s (window 1) and the 
cluster drift rate of Cluster 1 is 4x10-6s/s (window 3). It 
can be seen from Table V that the cluster drift rates of 
both Cluster 0 and Cluster 1 follow the clock drift rates 
of their rate master nodes.

V.5. Experiment 4: Fault-tolerant clock state  
correction and central clock rate correction - 

multi-cluster system

The  setup  for  Experiment  4  is  very  similar  to the 
setup used for Experiment  2. Cluster 0 and Cluster 1 
are connected via a gateway (Section III) to a 2-cluster 
system.  The  gateway  consists  of  the  gateway  node 
(Node  0)  in  Cluster  0  and  of  the  time  master  node 
(Node 4) in Cluster 1. The time master node in Cluster 
1 is also the rate master node for Cluster 1.

The  difference  to  Experiment  2  is  that  clock 
synchronization is performed using the combined clock 
state and clock rate correction algorithm as described in 
Section V.

Like  in  Experiment  2,  the  time  master  node  in 
Cluster  1  is  externally  synchronized  to  the  gateway 
node in Cluster 0. The time master node in Cluster 1 
periodically  retrieves the local time from the gateway 
node in Cluster 0 and adjusts its clock state and clock 
rate to that of the gateway clock5. 

From the point of view of Cluster 0, the time master 
node in  Cluster  0  behaves like  a time  keeping  node. 
The time master node (that is also the rate master node 
for  Cluster  1)  does  not  need  to  distribute  a  time  
message to the time keeping nodes like in Experiment 
2. The time keeping nodes learn from the state and rate 
change  at  the  time  master  node  from  the  next  time 
difference  capturing  value  obtained  from  the  time 
master node. Like in a single-cluster system, this state 
and rate change of the rate master node is handled by 
the  combined  clock  state  and  clock  rate  correction 
algorithm.  No  explicit  means  for  external  clock 
synchronization  are  necessary  at  the  time  keeping 
nodes.

This approach integrates internal and external clock 
synchronization into one algorithm: within a cluster, all 
nodes establish an internally  synchronized global time 
base that is externally  synchronized to the clock state 

5 For  not  to  interfere  with  the  internal  clock  synchronization 
algorithm,  the  state  and  rate  correction at  the  time  master node  is 
bounded to one microtick per TDMA round.

and  the  clock  rate  of  the  rate  master  node.  The  rate 
master node may be
• externally  synchronized to a time standard like a 

GPS  [30] receiver (like Node A1 in Cluster A in 
Figure 1)

• externally  synchronized  to  the  global  time  of 
another  cluster  (like  Node  B5  in  Cluster  B  in 
Figure 1)

• not externally synchronized at all.
Further,  this  approach  reduces  the  need  for  high-

quality oscillators in distributed real-time systems. Due 
to  the  periodic  rate  adjustment  at  the  time  keeping 
nodes, the achievable precision does not depend on the 
systematic drift rates of the node clocks. Experimental 
results  show  that  the  short-term  stability  of  crystal 
oscillators of average quality6 is in the range of several 
hours  [31].  This  is  remarkably  longer  than  the  clock 
rate adjustment period. With  the exception of the rate 
master  node  that  should  be  equipped  with  a  high-
quality  oscillator, the time keeping nodes may deploy 
cheaper oscillators with a wider drift rate margin and a 
poorer long-term stability than high-quality (and more 
expensive) oscillators. This is meaningful  in a market 
of  mass  production  like  the  emerging  automotive 
market  for  drive-by-wire  systems,  where  the  cost  of 
every single component is scrutinized in order to find 
alternatives that are less costly [28].

Figure  9 shows  the  results  for  Experiment  4.  The 
combined  algorithm improves the  precision of the  2-
cluster  system  by  400%  from  22  microticks  to  5 
microticks  (window  0).  The  bounded  clock  state 
corrections  (one  microtick  per  TDMA  round)  at  the 
time master node in Cluster 1 (window 1) according to 
the deviations from the gateway node in Cluster 0 are 
sufficient  to  maintain  the  system  precision  of  5 
microticks  .  The  system  drift  rate  of  the  2-cluster 
system equals -4x10-6s/s. According to Table V, this is 
exactly  the  clock  drift  rate  of  the  rate  master  node 
(Node 2) in Cluster 0 whose clock serves as a state and 
rate reference for the 2-cluster system.

VI. Conclusion

This  paper  presents  a  simulation  model  for  time-
triggered  distributed  real-time  systems.  It  provides 
detailed  information  about  the  structure  and  the 
features  of  the  simulation  model.  It  also  provides  a 
simulation  case study  in  the  course of which  a clock 
synchronization  algorithm  was  developed  that 
integrates internal  and  external  clock synchronization 
in distributed  systems  and that remarkably improves

6 The oscillators used for the case study had a nominal frequency of 
10Mhz and a frequency stability of 100ppm.



Fig. 8 Fault-tolerant clock state correction and central clock rate 
correction - single-cluster system.

Fig. 9 Fault-tolerant clock state correction and central clock rate 
correction - multi-cluster system.

system precision while reducing the need for high-
quality oscillators.

Beside  the  simulation  of  clock  synchronization 
algorithms  in  distributed  systems,  SIDERA  has  been 
used for the investigation of startup algorithms and the 



transition from asynchronous to synchronous operation 
in  multi-cluster  real-time  systems  [32] and  for  the 
investigation of the impact of transient communication 
system  outages  (blackouts)  on  the  stability  of  clock 
synchronization in the TTA [27].

Currently  SIDERA supports the analysis of a clock 
rate  calibration  mechanism  used  for  the  Time- 
Triggered  Ethernet  TTE  [33] as  well  as  for  the 
investigation  of  the  stability  of  the  FlexRay  clock 
synchronization  algorithm  in  system  configurations 
used for typical automotive applications [34].
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